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Orthogonal polynomials on the real line always satisfy a three-term recurrence
relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix
(Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We
investigate new orthogonal polynomials by adding to the Jacobi matrix r new rows
and columns, so that the original Jacobi matrix is shifted downward. The r new
rows and columns contain 2r new parameters and the newly obtained orthogonal
polynomials thus correspond to an upward extension of the Jacobi matrix. We give
an explicit expression of the new orthogonal polynomials in terms of the original
orthogonal polynomials, their associated polynomials, and the 2r new parameters,
and we give a fourth order differential equation for these new polynomials when the
original orthogonal polynomials are classical. Furthermore we show how the
orthogonalizing measure for these new orthogonal polynomials can be obtained and
work out the details for a one-parameter family of Jacobi polynomials for which the
associated polynomials are again Jacobi polynomials. � 1996 Academic Press, Inc.

1. INTRODUCTION

The construction of families of orthogonal polynomials on the real line
from a given system of orthogonal polynomials (or from a given
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orthogonalizing weight +) has been the subject of various investigations
[3, 4, 6, 7, 9, 11, 14�16, 25]. Let Pn (n=0, 1, 2, ...) be a sequence of monic
orthogonal polynomials on the real line, with orthogonality measure +,
then these polynomials satisfy a three-term recurrence relation

Pn+1(x)=(x&bn) Pn(x)&a2
n Pn&1(x), n�0, (1.1)

with bn # R and a2
n>0 and initial conditions P0=1, P&1=0. The corre-

sponding orthonormal polynomials are

pn(x)=
1

a1a2 } } } an
Pn(x),

and they satisfy the three-term recurrence relation

xpn(x)=an+1 pn+1(x)+bn pn(x)+an pn&1(x), n�0. (1.2)

Putting the recurrence coefficients in an infinite tridiagonal matrix gives the
Jacobi matrix

J=\
b0

a2
1

1
b1

a2
2

1
b2
. . .

1
. . .

. . .+ ,

or the symmetric Jacobi matrix

Js=\
b0

a1

a1

b1

a2

a2

b2
. . .

a3
. . .

. . .+ .

Interesting new Jacobi matrices can be obtained by deleting the first r rows
and columns, and the corresponding orthogonal polynomials are then the
associated polynomials of order r, denoted by p (r)

n . Instead of deleting rows
and columns we will add r new rows and columns at the beginning of the
Jacobi matrix, thus introducing 2r new parameters. We call the corre-
sponding new orthogonal polynomials anti-associated of order r and denote
them by p (&r)

n . In Section 4 we will give explicit formulas for these anti-
associated polynomials in terms of the original orthogonal polynomials and
the associated polynomials. We also give a fourth order differential equation
in case the original orthogonal polynomials are classical. The construction
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of the orthogonality measure for the anti-associated polynomials is done
in Section 5. The analysis requires the knowledge of the orthogonality
measure of the original system and of the associated polynomials, and also
the asymptotic behavior of both Pn and P (1)

n as n � �. These things are
known for a particular one-parameter family of Jacobi polynomials which
we will call Grosjean polynomials (after Grosjean who gave a number of
interesting properties of this family in [9]) and which are considered in
Section 3.

The construction of new orthogonal polynomials by changing and
shifting recurrence coefficients has been under investigation by others. If
the original system of orthogonal polynomials has constant recurrence
coefficients, then one essentially deals with Chebyshev polynomials of
the second kind. Changing a finite number of the recurrence coefficients
leads to Bernstein�Szego� weights [22, Sect. 2.6], i.e., weights of the form
- 1&x2�\(x), where \ is a positive polynomial on the orthogonality inter-
val [&1, 1]. Such finite perturbations have been considered among others
by Geronimus [6], Grosjean [7], Sansigre and Valent [21], and Zabelin
[25]. The limiting case, when the number of changed recurrence coef-
ficients tends to infinity (with changes becoming smaller) is treated by
Geronimo and Case [4], Dombrowski and Nevai [3], and in [24].
Instead of starting with constant recurrence coefficients one can also start
with periodic recurrence coefficients. Finite perturbations of periodic
recurrence coefficients are considered by Geronimus [6], Grosjean [8]
and the limiting case by Geronimo and Van Assche [5]. Changing a finite
number of recurrence coefficients of a general system of orthogonal polyno-
mials has been investigated by Marcella� n et al. [11] and the limiting case
by Nevai and Van Assche [15]. Associated polynomials correspond to
deleting rows and columns of the Jacobi matrix, or equivalently to a
positive shift in the recurrence coefficients. This situation is rather well
known since it corresponds to numerator polynomials in Pade� approxima-
tion. A general study of such a shift in the recurrence coefficients can be
found in Belmehdi [1] or Van Assche [23], and for Jacobi polynomials we
refer to Grosjean [9] and Lewanowicz [10]. The case where a shift in the
recurrence coefficients is made together with a change of a finite number of
coefficients is treated by Nevai [14] and Peherstorfer [16]. In particular,
Nevai shows that when the original system is orthogonal on an interval 2
with weight function w, then the orthogonal polynomials with weight
function w(x)�| f+(x)| 2 on 2, where f (z)=a+S(Bw, z) and f+(x)=
lim= � 0+ f (x+i=), with S(Bw, z) the Stieltjes transform of the function Bw
and B a polynomial of degree l, have recurrence coefficients which can be
obtained by shifting the original recurrence coefficients and changing a
finite number of the initial recurrence coefficients. Note that this generalizes
the Bernstein�Szego� polynomials.
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2. BACKGROUND AND NOTATION

Let us consider the family of monic orthogonal polynomials Pn ,
n=0, 1, 2, ..., where Pn has degree n, defined by the three-term recurrence
relation

Pn+1(x)=(x&bn) Pn(x)&a2
n Pn&1(x), n�0, a2

n{0, (2.1)

with P&1=0 and P0=1. The sequences bn (n�0) and a2
n (n�1) also

generate the associated monic polynomials of order r (r a positive integer)
P(r)

n , n=0, 1, 2, ..., by the shifted recurrence

P(r)
n+1(x)=(x&bn+r) P (r)

n (x)&a2
n+rP (r)

n&1(x), n�0,

with P(r)
&1=0 and P (r)

0 =1. The recurrence relation (2.1) can also be written
in operator form using the non-symmetric Jacobi matrix J given by

b0 1

a2
1 b1 1

a2
2 b2 1

J=
. . .

. . .
. . . ,

a2
r br 1

a2
r+1 br+1 1

. . .
. . .

. . .

as

xP9 =JP9 ,

where P9 =(P0 , P1 , P2 , ...)t. In the same way the recurrence relation
defining the associated polynomials of order r is represented by

xP9 (r)=J (r)P9 (r),

where P9 (r)=(P (r)
0 , P (r)

1 , P (r)
2 , ...)t and J (r) is the Jacobi matrix obtained by

deleting the first r rows and columns of J.
Observe that J (r)=J for every integer r if and only if bn=b for n�0 and

a2
n=a2 for n>0. The corresponding family of orthogonal polynomials

are, up to standardization of the orthogonality interval to [&1, 1], the
monic Chebyshev polynomials of the second kind un(x)=2&nUn(x), for
which b=0 and a2=1�4. This fundamental family is a particular case
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(:=;=1�2) of the Jacobi family P (:, ;)
n (x), which are orthogonal polyno-

mials with respect to the weight function (1&x): (1+x); on [&1, 1].
Closely related to the family Un(x) are the Chebyshev polynomials of the
first kind Tn(x) (:=;=&1�2), of the third kind Vn(x) (:=1�2, ;=&1�2)
and of the fourth kind Wn(x) (:=&1�2, ;=1�2). These monic Chebyshev
polynomials satisfy the same recurrence relation

Pn+1(x)=xPn(x)& 1
4Pn&1(x), n�2, (2.2)

but with different initial conditions for P1 and P2 . These initial conditions
are hidden in the Jacobi matrices JT , JV , JW for respectively the polyno-
mials Tn , Vn and Wn , which are explicitly

JT=\0
1
2

1
JU+ , JV=\&1

2
1
4

1
JU+ , JW=\

1
2
1
4

1
JU+ ,

where JU is the Jacobi matrix for the Chebyshev polynomials of the second
kind Un . These four families can be embedded in the more general two-
parameter family represented by the Jacobi matrix

J (&1)=\b
c

1
JU+ ,

and by definition the corresponding monic polynomials Pn satisfy the
recurrence relation (2.2) with initial conditions P1(x)=x&b, P2(x)=
xP1(x)&cP0(x). All the associated polynomials for r�1 are the same:

P(r)
n (x)=un(x), n�0, r�1.

3. GROSJEAN POLYNOMIALS

The families [tn , n�0] and [un , n�0] of Chebyshev polynomials have
an interesting extension given by Grosjean. Let us consider first the monic
Jacobi family for which the parameters satisfy :+;=&1, and define
G :

0=1,

G:
n(x)=cn P (:, &1&:)

n (x), &1<:<0,

where cn is a constant making this a monic polynomial, i.e., cn=2n�( 2n&1
n ).

These are monic orthogonal polynomials with respect to the weight
function

wG(x)=
sin(&?:)

? \1&x
1+x+

: 1
1+x

, &1<x<1. (3.1)
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A second family of monic Jacobi polynomials with :+;=1 is denoted by

g:
n(x)=dn P(:, 1&:)

n (x), &1<:<2,

with dn=2n( 2n+1
n )&1, which are monic orthogonal polynomials with weight

function

wg(x)=
sin ?:

:(1&:)? \
1&x
1+x+

:

(1+x), &1<x<1. (3.2)

Obviously we have the special cases G &1�2
n (x)=tn(x) and g1�2

n (x)=un(x).
We will refer to the polynomials G:

n and g:
n as the Grosjean polynomials of

the first and second kind respectively. This terminology is justified since
Grosjean [9] showed, using direct verification, that

(G :
n)(1)=g&:

n , (3.3)

and Ronveaux [19] gave the generalization of the differential link
t$n(x)=nun&1(x) between the Chebyshev polynomials

(G :
n)$ (x)=(&1)n&1 ng&:

n&1(&x)=ng1+:
n&1. (3.4)

Recall that for :=&1�2 we have un(&x)=(&1)n un(x). Grosjean actually
shows [9, p. 275] that the only Jacobi polynomials for which the
associated polynomials are again Jacobi polynomials are the Chebyshev
polynomials of the first, second, third and fourth kind, and the Grosjean
polynomials. Property (3.3) can easily be checked from the recurrence
coefficients, which are

bn=
2:+1
4n2&1

, a2
n=

(n+:)(n&1&:)
(2n&1)2 , for G :

n , (3.5a)

and

bn=
&2:+1

4(n+1)2&1
, a2

n=
(n+:)(n+1&:)

(2n+1)2 , for g:
n , (3.5b)

(see, e.g., Chihara [2, p. 220]) by changing n to n+1 and : to &: in
(3.5a), which gives (3.5b). Property (3.4) follows by the differential
property (P� (:, ;)

n )$ (x)=nP� (:+1, ;+1)
n&1 (x) for the monic Jacobi polynomials

P� (:, ;)
n and the symmetry property p (:, ;)

n (&x)=(&1)n p (;, :)
n (x) (see, e.g.,

Szego� [22, p. 63]). It is already interesting to note that for the Grosjean
polynomials the a2

n are rational function of n consisting of the ratio of two
quadratic polynomials in n (as in the Legendre case), whereas in general for
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the Gegenbauer family one has a ratio of two cubic polynomials in n and
for the Jacobi polynomials one deals with quartic polynomials in the
degree n.

The pair of Grosjean polynomials also give an answer to the following
question. Let D denote differentiation D=d�dx and let L2=_(x) D2+
{(x) D+*n be the second order (hypergeometric or degenerate hyper-
geometric) differential operator for the classical orthogonal polynomials
(Jacobi, Laguerre, Hermite, Bessel), and [Pn , n�0] be the corresponding
family of orthogonal polynomials, where Pn corresponds with the eigen-
value *n=&n[(n&1) _"+2{$]�2, so that L2(Pn)=0. If L2* is the formal
adjoint of L2 ,

L2*=L2+2[_$(x)&{(x)] D+_"&{$,

then for which orthogonal family of polynomials [Pn*, n�0] does one
have L2*(Pn*)=0? Of course, the Legendre polynomials (_$={) solve this
problem since then L2=L2*. For Grosjean polynomials the operator L2 is

LG, :, n=(1&x2) D2+(&1&2:&x) D+n2, LG, :, n(G :
n)=0,

and

Lg, :, n=(1&x2) D2+(1&2:&3x) D+n(n+2), Lg, :, n(g:
n)=0,

and we have

L*G, :, n=Lg, &:, n&1,

Therefore, if Pn=G :
n , then Pn*=g&:

n&1. From (3.4) we also have

DLG, :, n=Lg, 1+:, n&1D.

The relative position of the zeros x:
1, n<x:

2, n< } } } <x:
n, n of G :

n compared
to the zeros xj, n=&cos(2 j&1)?�2n of Tn is controlled by a classical
comparison theorem due to Markov [22, Theorem 6.12.2]. The ratio
between the Chebyshev weight

wT (x)=
1

?

1

- 1&x2
, &1<x<1,

and the weight wG for the Grosjean polynomials G :
n given by (3.1) is

wT (x)
wG(x)

=const_\1+x
1&x+

:+1�2

.
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Now (1+x)�(1&x) is an increasing function of x on the interval [&1, 1],
hence for &1�2<:<0 the ratio wT�wG is an increasing function on
[&1, 1], and consequently we have the following inequalities

x:
j, n<&cos

(2j&1)?
2n

, j=1, 2, ..., n, &1�2<:<0.

For &1<:<&1�2 the ratio wT�wG is decreasing, and thus the inequalities
for the zeros are reversed

x:
j, n>&cos

(2 j&1)?
2n

, j=1, 2, ..., n, &1<:<&1�2.

Similar conclusions can be made for the zeros y:
j, n ( j=1, 2, ..., n) of

Grosjean polynomials g:
n of the second kind as compared to the zeros

&cos( j?�n+1) ( j=1, 2, ..., n) of the Chebyshev polynomials of the second
kind. The ratio of the two weights is

wU (x)
wg(x)

=const_\1+x
1&x+

:&1�2

,

and thus for 1�2<:<2 this ratio is an increasing function so that

y:
j, n<&cos

j?
n+1

, j=1, 2, ..., n, 1�2<:<2.

For &1<:<1�2 the inequalities are reversed

y:
j, n>&cos

j?
n+1

, j=1, 2, ..., n, &1<:<1�2.

Finally we note that when we are dealing with Grosjean polynomials of
the first kind, the product of the weight function of the orthogonal polyno-
mials and the weight function of the associated polynomials is constant, as
in the case of Chebyshev polynomials of the first kind. This is not true
when dealing with the Chebyshev polynomials of the third and fourth kind.

4. ANTI-ASSOCIATED ORTHOGONAL POLYNOMIALS

The situation described in Section 2 suggests to construct new families of
orthogonal polynomials, which we will denote by P (&r)

n+r , obtained by
pushing down a given Jacobi matrix and by introducing in the empty
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upper left corner new coefficients b&i (i=r, r&1, ..., 1) on the diagonal and
new coefficients a2

&i{0 (i=r&1, r&2, ..., 0) on the lower subdiagonal.
The new Jacobi matrix is then of the form

b&r 1

a2
&r+1 b&r+1 1

a2
&r+2 b&r+2 1

J (&r)=
. . .

. . .
. . . .

a2
0 b0 1

a2
1 b1 1

. . .
. . .

. . .

We will call the orthogonal polynomials P (&r)
n for this Jacobi matrix J (&r)

anti-associated polynomials for the family Pn . They contain 2r new
parameters and satisfy

[P (&r)
n+r (x)](k)=P(k&r)

n+r (x).

For r=1 we have

J (&1)=\b&1

a2
0

1
J+ ,

and for r=2 we have

b&2 1 0

J (&2)=\a2
&1 b&1 1+ .

0 a2
0 J

This new family of anti-associated polynomials P (&r)
n can easily be

represented as a combination of the original family Pn and the associated
polynomials P (1)

n&1. First, denote by Qn the orthogonal polynomials for the
finite Jacobi matrix

b&r 1

a2
&r+1 b&r+1 1\ a&r+2 b&r+2 1 + ,

. . .
. . .

. . .

a2
&1 b&1
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so that they satisfy Q0=1, Q&1=0 and

Qn+1(x)=(x&b&r+n) Qn(x)&a2
&r+nQn&1(x), n�r&1.

Then, clearly

P(&r)
n (x)=Qn(x), 0�n�r.

For n>r the anti-associated polynomials satisfy the three-term recurrence
relation

P (&r)
n+r+1(x)=(x&bn) P (&r)

n+r (x)&a2
n P (&r)

n+r&1(x), n�0,

so that P (&r)
n+r (x) is a solution of the three-term recurrence relation of the

original family Pn(x). The initial conditions however are P (&r)
r (x)=Qr(x)

and P (&r)
r&1(x)=Qr&1(x), and since every solution of the three-term

recurrence relation (2.1) is a linear combination of Pn(x) and P (1)
n&1(x), we

have

P(&r)
n+r (x)=APn(x)+BP (1)

n&1(x), n�0.

Using the initial conditions for n=0 and n=1 gives A=Qr(x) and
B=&a2

0Qr&1(x), and thus we have

P(&r)
n+r (x)=Qr(x) Pn(x)&a2

0Qr&1(x) P (1)
n&1(x), n�0. (4.1)

From this representation it is easy to construct a differential equation
satisfied by the family P(&r)

n+r if the original family Pn is itself solution of a
linear differential equation of second order, for instance when Pn are the
classical polynomials (Jacobi, Laguerre, Hermite, Bessel), then they are a
solution of the hypergeometric differential equation

L2 y#_(x) y"+{(x) y$+\&n
2

(n&1) _"&{$n+ y=0. (4.2)

The techniques used in [17�20] and the fact that

L2*P(1)
n&1=(_"&2{$) P$n (4.3)

easily give a fourth order differential equation satisfied by the anti-
associated polynomials P (&r)

n+r(x). The general technique is the following.
Let B(x)=&a2

0Qr&1(x) and put J(x)=B(x) P (1)
n&1(x). Then we can trans-

form the equation (4.3) to

L2*
J
B

=(_"&2{$) P$n ,
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and introducing the differential operator

R2=_B2D2+[(2_$&{) B2&2_BB$]D+2_(B$)2&_BB"

&BB$(2_$&{)&__"
2

(n2&n&2)+{$(1+n)& B2

this is equivalent to

R2J=(_"&2{$) B3P$n . (4.4)

From (4.1) we then have

R2P (&r)
n+r =R2[QrPn]&(_"&2{$) a6

0Q3
r&1P$n ,

and eliminating the second derivative using (4.2) then leads to

R2P (&r)
n+r =M0Pn+N0P$n , (4.5)

where M0 and N0 are polynomials. Taking the derivative in (4.5) and using
(4.2) to eliminate P"n also gives

_[R2P(&r)
n+r ]$=M1Pn+N1P$n ,

where M1 and N1 are polynomials, and repeating this also gives

_[_[R2P(&r)
n+r ]$]$=M2Pn+N2P$n .

This shows that

R2 P (&r)
n+r M0 N0

det \ _[R2P (&r)
n+r ]$ M1 N1+=0, (4.6)

_[_[R2P (&r)
n+r ]$]$ M2 N2

which is the desired fourth order differential equation. When Pn(x)=G :
n(x),

then _"&2{$=0 so that (4.4) simplifies and becomes homogeneous. The
differential equation (4.6) however remains one of the fourth order, except
when :=&1�2, because then

P (&r)
n+r (x)=A0(x) Tn(x)+B0(x) T$n(x),

where A0 and B0 are polynomials. Similar as in the above reasoning we
then get a second order differential equation

P (&r)
n+r A0 B0

det \ _[P (&r)
n+r ]$ A1 B1+=0,

_[_[P (&r)
n+r ]$]$ A2 B2

which is equivalent to the equation given in [21].
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5. CONSTRUCTION OF THE ORTHOGONALITY MEASURE

If we use probability measures throughout the analysis, and if we use
lower case p and q for the orthonormal polynomial, then we have
pn=#nPn , where

#n=(a1a2 } } } an)&1.

Similarly

qn(x)=
Qn(x)

a&r+1a&r+2 } } } a&r+n
, n�r,

and p (1)
n&1=# (1)

n P (1)
n&1 where # (1)

n =a1#n . Thus the orthonormal anti-
associated polynomials are

p (&r)
n+r (x)=(a&r+1 } } } a0)&1 #nP (&r)

n+r (x),

and using this in (4.1) gives

p (&r)
n+r (x)=qr(x) pn(x)&

a0

a1

qr&1(x) p (1)
n&1(x). (5.1)

The orthonormal polynomials are useful in obtaining the weight function
for the anti-associated polynomials. Indeed, we can compute the weight
function using Christoffel functions

*n(x)=\ :
n

j=0

p2
j (x)+

&1

by means of the following result of Ma� te� , Nevai and Totik [12, Theorem 8,
p. 449]

Theorem MNT. Suppose pn(x) are orthonormal polynomials for a
measure + on [&1, 1] and let

|
1

&1
log +$(x) dx>&�.

Then

lim
n � �

n*n(x)=?+$(x) - 1&x2 (5.2)

holds almost everywhere on [&1, 1].
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The above logarithmic condition can be relaxed and in fact it suffices to
assume that + is a regular measure on [&1, 1] (i.e., supp(+)=[&1, 1]
and limn � � #1�n

n =2) and

|
b

a
log +$(x) dx>&�

in order that (5.2) holds almost everywhere on [a, b]/(&1, 1) [12,
Thm. 8]. We will assume these conditions for the measure + and moreover
we allow the addition of a finite number of mass points to +. Then (5.2)
will still hold almost everywhere on [a, b]. Indeed, if we add a mass point
c to + then by the extremum property

*n(x; +)= min
q n(x)=1 | q2

n(t) d+(t),

where the minimum is taken over all polynomials qn of degree at most n
which take the value 1 at the point x, we see that for the measure
+c=++=$c (i.e., the measure + to which we add a mass point at c with
mass =)

*n(x; +c)= min
qn(x)=1 \| q2

n(t) d+(t)+=q2
n(c)+

� min
qn(x)=1 | q2

n(t) d+(t)

=*n(x; +),

so that lim infn � � n*n(x; +)�?+$(x) - 1&x2, almost everywhere on [a, b].
On the other hand, consider the polynomial qn(t)=(t&c) rn&1(t)�(x&c),
where rn&1 is the minimizing polynomial for the measured&(t)=(t&c)2 d+(t),
then for x{c

*n(x; +c)�
1

(x&c)2 | (t&c)2 r2
n&1(t) d+(t)

=(x&c)&2 | r2
n&1(t) d&(t)

=(x&c)&2 *n&1(x; &)
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so that lim supn � � n*n(x; +c)�limn � �(x&c)&2 n*n(x; &)=?+$(x) - 1&x2

almost everywhere on [a, b], since & is regular and satisfies the Szego� con-
dition on [a, b]. Combined with the previous inequality this gives

lim
n � �

n*n(x; +c)=?+$(x) - 1&x2

almost everywhere on [a, b], independent of the mass point c. This proce-
dure can be repeated, so that adding a finite number of mass points does
not change the behavior in (5.2).

In the previous discussion we wanted to allow the measure + to have a
larger support than [&1, 1] (by allowing mass points outside [&1, 1])
but in such a way that (5.2) still holds. Alternatively we can use a weaker
result by Nevai [13, Thm. 54, p. 104] in which the support of + is allowed
to be [&1, 1] _ E, where E contains at most a denumerable number of
points which can only accumulate at \1.

Theorem N. Suppose + # M(0, 1), i.e., the recurrence coefficients an and
bn have asymptotic behavior given by

lim
n � �

an=1�2, lim
n � �

bn=0.

Then

lim sup
n � �

n*n(x; +)=?+$(x) - 1&x2

holds for almost every x # supp(+).

With this result, if we can compute the limit of n*n(x; +) for x # (&1, 1),
then this limit is almost everywhere equal to ?+$(x) - 1&x2, which allows
us to compute the weight +$ on (&1, 1) without having to worry about the
fact that supp(+) may be larger than [&1, 1]. The existence of such a limit
is however not guaranteed by Nevai's theorem, contrary to the theorem of
Ma� te� , Nevai and Totik where the existence of the limit is in the conclusion
of the theorem but where supp(+)=[&1, 1] is required.

If we assume that the original family pn belongs to a measure + in the
class M(0, 1), then the anti-associated polynomials p (&r)

n will also have a
measure +(&r) which belongs to the class M(0, 1), and thus we know that
+(&r) has support [&1, 1] _ E, where E is at most denumerable with the
only accumulation points at \1 [24, Thm. 1, p. 437]. In fact, there can be
at most 2r mass points, since the associated polynomials of order r of the
anti-associated polynomials p (&r)

n are again pn and these have all their zeros
inside [&1, 1], and the interlacing property of orthogonal polynomials
and associated orthogonal polynomials shows that adding one row and
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one column in the Jacobi matrix to form the anti-associated polynomials
p(&1)

n can at most add a mass point to the left of &1 and to the right
of 1. Adding r rows and columns thus can add at most r mass points to the
left of &1 and r mass points to the right of 1. If the original measure +
belongs to the Szego� class (which is a subclass of M(0, 1)), then the
measure +(&r) restricted to [&1, 1] also belongs to the Szego� class. This is
so because if we denote by + (&r)

[&1, 1] the restriction of +(&r) to the interval
[&1, 1], then limn � � #n(+(&r))�#n(+ (&r)

[&1, 1]) exists and is strictly positive
[13, Thm. 25 on p. 136] and since #n(+(&r))=#n(+)(a&r+1 } } } a0)&1

and + belongs to the Szego� class, which is equivalent with the statement
that limn � � #n�2n exists and is strictly positive, it follows that
limn � � #n(+ (&r)

[&1, 1])�2n exists and is strictly positive, so that + (&r)
[&1, 1] belongs

to the Szego� class.
In order to use the result in (5.2) we observe that for n�r

:
n

j=0

[ p (&r)
j (x)]2= :

r&1

j=0

q2
j (x)+ :

n&r

j=0

[ p (&r)
j+r (x)]2,

and using (5.1) this gives

:
n&r

j=0

[ p (&r)
j+r (x)]2=q2

r (x) :
n&r

k=0

p2
k(x)+\a0

a1+
2

q2
r&1(x) :

n&r&1

k=0

[ p (1)
k (x)]2

&
2a0

a1

qr(x) qr&1(x) :
n&r

k=1

pk(x) p (1)
k&1(x).

In order to be able to compute these sums, we will need to be able to com-
pute Christoffel functions of associated polynomials and sums of mixed
form containing the product pn(x) p (1)

n&1(x). This is in general not so easy.
However, when we use Grosjean polynomials of the first kind, then the
associated polynomials are Grosjean polynomials of the second kind, so
that we are always dealing with Jacobi polynomials, for which we can
compute these sums, at least as n becomes large. For the anti-associated
polynomials corresponding to Grosjean polynomials we thus can prove the
following result.

Theorem 1. If the original system of orthogonal polynomials consists of
Grosjean polynomials of the first kind, then the anti-associated polynomials
p(&r)

n are orthogonal with respect to a measure +(&r) which is absolutely con-
tinuous on [&1, 1] with density

wr(x)=
sin(&?:)

?
(1&x):

(1+x):+1 } qr(x)&a0 ei:?qr&1(x)
(1&x):

(1+x):+1 }
&2

.
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In addition, there may be at most 2r mass point outside [&1, 1] (r to the
left of &1 and r to the right of 1). These mass points are roots of the
equation

qr(x)&a0 qr&1(x) sign x
|x&1| :

|x+1| :+1=0.

Proof. If the original family consists of Grosjean polynomials, then by
(4.3) and (3.1) we have for &1<x<1

lim
n � �

1
n

:
n&r

k=0

p2
k(x)=

1

- 1&x2

1

sin(&?:)

(1+x):+1

(1&x):
, (5.3)

and this even holds uniformly on closed subintervals of (&1, 1), and
similarly by using (3.2) (with : replaced by &:)

lim
n � �

1
n

:
n&r&1

k=0

[ p (1)
k (x)]2=

1

- 1&x2

&2:(1+:)

sin(&?:)

(1&x):

(1+x):+1
. (5.4)

For the remaining sum, which consists of a mixture of the original polyno-
mials and the associated polynomials, we can use Darboux's extension of
the Laplace�Heine formula for Legendre polynomials [22, Thm., 8.21.8 on
p. 196]

- n? P (:, ;)
n (cos %)=\sin

%
2+

&:&1�2

\cos
%
2+

&;&1�2

_cos \[n+(:+;+1)�2] %&
:+1�2

2
?++O(1�n),

(5.5)

which holds uniformly for x=cos % on closed intervals of (&1, 1). For
Grosjean polynomials Pn(x)=G :

n(x) we have

pn(x)=[1+O(1�n)] � 2n?
sin(&?:)

P (:, &1&:)
n (x),

p (1)
n&1(x)=[1+O(1�n)] �&n?:(1+:)

sin(&?:)
P(&:, 1+:)

n&1 (x),
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and hence for x=cos % with =�%�?&=

pn(x)=� 2
sin(&?:) \sin

%
2+

&:&1�2

\cos
%
2+

:+1�2

_cos \n%&
:+1�2

2
?++O(1�n)

and

p (1)
n&1(x)=�&:(1+:)

sin(&?:) \sin
%
2+

:&1�2

\cos
%
2+

&:&3�2

_cos \n%+
:&1�2

2
?++O(1�n).

Using this gives

lim
n � �

1
n

:
n&r

k=1

pk(x) p (1)
k&1(x)=

- &2:(1+:)
sin(&?:)

1
sin %�2 cos %�2

_ lim
n � �

1
n

:
n&r

k=1

cos \k%&
:+1�2

2
?+ cos \k%&

&:+1�2
2

?+ .

Using 2 cos a cos b=cos(a+b)+cos(a&b) gives

1
n

:
n&r

k=1

cos \k%&
:+1�2

2
?+ cos \k%&

&:+1�2
2

?+
=

1
2n

:
n&r

k=1

[cos(2k%&?�2)+cos :?]

and thus uniformly for x on closed subsets of (&1, 1) we have

lim
n � �

1
n

:
n&r

k=1

pk(x) p (1)
k&1(x)=

- &2:(1+:) cos ?:
sin % sin(&?:)

. (5.6)

Alternatively, (5.5) can also be obtained by using a Christoffel�Darboux
type formula [1, corollary 2.12] which for orthonormal polynomials is

:
n

k=1

pk(x) p (1)
k&1(x)=an+1[ p$n+1(x) p (1)

n&1(x)&p$n(x) p (1)
n (x)].

When the original system consists of Grosjean polynomials of the first kind
G:

n one knows by (3.3) that the associated polynomials are Grosjean
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polynomials of the second kind g&:
n and by (3.4) we know that the

derivative of G :
n is ng1+:

n&1. For the orthonormal polynomials this gives

pn(x)=[1+O(1�n)] � 2n?
sin(&?:)

P (:, &1&:)
n (x),

p (1)
n (x)=[1+O(1�n)] �&n?:(1+:)

sin(&?:)
P (&:, 1+:)

n (x),

p$n(x)=[1+O(1�n)] � 2?n
sin(&?:)

n
2

P (1+:, &:)
n&1 (x),

and hence using (5.5) gives

lim
n � �

1
n

:
n

k=1

pk(x) p (1)
k&1(x)

=
- &2:(1+:)

sin(&?:) sin2 %
lim

n � � _cos \(n+1)%&
:+3�2

2
?+ cos \n%&

&:+3�2
2

?+
&cos \n%&

:+3�2
2

?+ cos \(n+1) %&
&:+1�2

2
?+&

Simple trigonometry then gives (5.6). Combining the limiting relations
(5.3), (5.4), and (5.6) gives uniformly for x on closed intervals of (&1, 1)

lim
n � �

1
n

:
n

j=0

[ p (&r)
j (x)]2=

1

- 1&x2

1

sin(&?:) _q2
r(x)

(1+x):+1

(1&x):

&2
a0

a1

qr(x) qr&1(x) cos :? - &2:(1+:)

+\a0

a1+
2

q2
r&1(x)(&2:)(1+:)

(1&x):

(1+x):+1&
Observe now that a1=- &2:(1+:), thus we find

lim
n � �

1
n

:
n

j=0

[ p (&r)
j (x)]2

=
1

sin(&?:)

1

- 1&x2

(1+x):+1

(1&x): } qr(x)&a0ei:?qr&1(x)
(1&x):

(1+x):+1 }
2

,
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and this holds uniformly on closed intervals [a, b]/(&1, 1). From (5.2)
we can then conclude that the orthogonality measure +(&r) for the anti-
associated polynomials has an absolutely continuous part on (&1, 1) with
weight function

wr(x)=
sin(&?:)

?
(1&x):

(1+x):+1 } qr(x)&a0 ei:?qr&1(x)
(1&x):

(1+x):+1 }
&2

, (5.7)

which is the weight function of the original system pn (Grosjean polyno-
mials of the first kind) divided by a positive factor containing the new
parameters b&r , ..., b&1 and a2

&r+1 , ..., a2
&1 , a2

0. This factor cannot vanish
on (&1, 1), because then both the real part and the imaginary part of

qr(x)&a0 ei:?qr&1(x)
(1&x):

(1+x):+1

need to vanish. The imaginary part can only vanish when qr&1(x)=0, and
assuming this, the real part can then only vanish when also qr(x)=0. This
is impossible since two consecutive orthogonal polynomials cannot have a
common zero.

Since the original orthogonal polynomials are Jacobi polynomials, they
will belong to the class M(0, 1). Moreover, the original system satisfies

:
�

k=0

( |1&4a2
k+1 |+2 |bk | )<�,

and hence also the new system of anti-associated polynomials satisfies this
trace class condition. But then we know [24, Theorem 6] that the
orthogonality measure +(&r) is absolutely continuous on (&1, 1) and we
have obtained the weight function in (5.7). The mass points outside (&1, 1)
are those points x # R"(&1, 1) for which ��

k=0 [ p (&r)
k (x)]2<�. This

means that at a mass point x we have p (&r)
n (x) � 0, and from (5.1) this

implies that

lim
n � �

pn(x) _qr(x)&
a0

a1

qr&1(x)
p (1)

n&1(x)
pn(x) &=0.

For x � [&1, 1] we know that | pn(x)| increases exponentially fast, hence
at a mass point we always have

qr(x)&
a0

a1

qr&1(x) lim
n � �

p (1)
n&1(x)
pn(x)

=0.
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The limit of the ratio p (1)
n&1(x)�pn(x) can be found by using Markov's

theorem, which states that this limit is the Stieltjes transform of the
measure +, or it can be obtained from Darboux's generalization of the
Laplace�Heine formula for Legendre polynomials for x outside [&1, 1]
[22, Theorem 8.21.7]. Both methods give

lim
n � �

p (1)
n&1(x)

a1 pn(x)
=

(x&1):

(x+1):+1 ,

where the right hand side is to be taken positive if x>1 and negative if
x<&1. This means that a mass point satisfies

qr(x)&a0 qr&1(x)
(x&1):

(x+1):+1=0.

Clearly, there can be at most 2r mass points, as was indicated earlier. K

Remark. In order to determine the measure +(&r) for the anti-associated
polynomials corresponding to Grosjean polynomials, one can also use the
results from Theorem 3.9 in Peherstorfer [16] using the Cauchy principal
value and the Stieltjes transform. Indeed, the Grosjean polynomials are one
of the seldom cases where a nice explicit expression for the Cauchy prin-
cipal value and the Stieltjes transform exists and for this reason the results
of [16] can be applied without problems. Observe that this technique is
basically also the one used by Grosjean in [9]. Our approach using
Christoffel functions has the advantage that it avoids taking boundary
values of a Stieltjes transform or evaluating a Cauchy principal values and
uses only information of the orthogonal polynomials on the interval
[&1, 1]. In particular our method also works when appropriate asymptotic
information of the orthogonal polynomials and the associated orthogonal
polynomials on the real line is available.

6. EXAMPLES

The simplest examples occur when we take :=&1�2, in which case the
original system consists of Chebyshev polynomials of the first kind. The
weight function for the anti-associated polynomials then becomes

wr(x)=
1

?

1

- 1&x2

1

|qr(x)&ia0qr&1 �- 1&x2| 2

=
1
?

- 1&x2

(1&x2) q2
r(x)+a2

0q2
r&1(x)

.
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Hence this weight function is the weight function of Chebyshev polyno-
mials of the second kind, divided by a polynomial which is positive on
[&1, 1]. Such orthogonal polynomials are known as Bernstein�Szego�
polynomials [22, Section 2.6].

In case the original system consists of Chebyshev polynomials of the
second kind, for which all the recurrence coefficients are constant, we have
pn=Un and p (1)

n&1=Un&1. Relation (5.1) then becomes

p (&r)
n+r (x)=qr(x) Un(x)&2a0qr&1(x) Un&1(x).

Using Un(x)=sin(n+1) %�sin % (x=cos %), one easily shows for
&1<x<1

lim
n � �

1
n

:
n

j=0

U 2
j (x)=

1
2(1&x2)

and

lim
n � �

1
n

:
n

j=1

Uj (x) Uj&1(x)=
x

2(1&x2)
,

and hence

1
n

:
n

j=0

[ p (r)
j (x)]2=

1
2(1&x2)

[q2
r(x)&4a0 xqr(x) qr&1(x)+4a2

0q2
r&1(x)],

and hence the weight function becomes

w(x)=
2
?

- 1&x2

q2
r(x)&4a0 xqr(x) qr&1(x)+4a2

0q2
r&1(x)

,

i.e., this is again a Bernstein�Szego� weight. Observe that it can be written
as

w(x)=
2
?

- 1&x2

|qr(x)&2a0ei%qr&1(x)| 2 .

For the mass points we see that they can occur only for x � [&1, 1] when

qr(x)&2a0qr&1(x) lim
n � �

Un&1(x)
Un(x)

=0,
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and since Un&1(x)�Un(x) � 1�(x+- x2&1) for x � [&1, 1], where the
limit is to be taken positive for x>1 and negative for x<&1, it follows
that x is a mass point only when

qr(x)&2a0 qr&1(x)
1

x+- x2&1
=0. (6.1)

If we multiply the left hand side by qr(x)&2a0qr&1(x)�(x&- x2&1), then
this implies

q2
r(x)&4a0xqr(x) qr&1(x)+4a2

0 q2
r&1(x)=0.

So the mass points are zeros of the polynomial in the denominator of the
weight function, but only those zeros for which (6.1) holds.

For r=1 we can consider the following cases:

(1) a0=1�- 2 and b&1=0. In this case the weight function of the
anti-associated polynomials is w(x)=1�(? - 1&x2) and thus we have the
Chebyshev polynomials of the first kind.

(2) a0=1�2 and b&1=&1�2. Then the weight function is the one for
Jacobi polynomials with :=1�2 and ;=&1�2 and thus we have
Chebyshev polynomials of the third kind Vn(x).

(3) Finally when a0=1�2 and b&1=1�2 the weight function becomes
the one for Jacobi polynomials with :=&1�2 and ;=1�2, so that we have
Chebyshev polynomials of the fourth kind Wn(x).
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